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* Supj:nrting Information 

21 Between 2005 and 2013, natural gas production in the U.S. 
28 increased by 35% largely due to unoonventional gas production 
29 in shale and tight gas formations.1 Betvvren 2013 and 2040, 
30 natural gas production is expected to incra:se another 45% with 
31 production from tight gas formations in particular incf"Effiing 
32 from 4.4 to 7.0 trillion cubic feet (59'/o) primarily in the Gulf 
33 Coast and Dakota5/Rocky Mountain rEgions. 1 Tight gas 
34 formations alrEEdy a::count for 26% of total natural gas 
35 production in the United StatES today. 
36 In the U.S. Code of Federal REgulations (CFR), there are 
37 two federal rEgulations for protecting groundwater rESOurce; 
38 for prErent and future t.re relevant to oil and gas extroction -
39 "Underground Sourre of Drinking Water" (USDW) and 
40 "US3ble water." A USDW is defined in 40 CFR 144.3 in 
41 requirerrents for the Underground Injection Control program 
42 promulgated under Part C of the 83fe Drinking Water Act 
43 (SDWA) cs "an a::Juifer or its portion: (a)(1) Which suppliES 
44 any public water system; or (2) Which oontains a sufficient 
45 quantity of ground water to supply a public water system; and 
46 (i) Currently suppliES drinking water for human oonsumption; 
47 or (ii) Contains fEMJer than 10000 mg/L total dissolved solids; 
48 and (b) Which is not an exempted a::Juifer." With the exception 
49 of use of diErel fuels, the Energy Policy Act of 2005 ("EPAct") 
so exempted hydraulic frocturing from the SDWA, thereby 
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allowing injection of stimulation fluids into USDVVs. Hovvever, 51 

under &:ction 1431 of the SDWA, the Administrator of EPA 52 

may take oction if impoct to a USDW "may prESent an 53 

imminent and sul:stantial endangerrrent to the hoolth of 54 

persons." ss 
The term "US3ble water" appliES to lands oontaining federal 56 

or tril:al mineral rights rEgulated by the Bureau of Land 57 

Ma~t (BLM). This term is applicable to the Pavillion sa 
Field ~ tril:al mineral rights are cssociated with more 59 

than half of production wells there. In the BLM Onshore Oil oo 
and Gcs Order No. 2, US3ble water is defined cs water 61 

oontaining :::;10000 mg/L total dissolved solids (TDS) - a 62 

definition maintained in the March 2015 BLM rule on 63 

hydraulic frocturing (43 CFR 3160). In 43 CFR 3160, BLM 64 

retained a thrEShold for groundwater protection at 10000 65 

mg/L stating, "Given the incf"Effiing s::arcity and technological 66 

improverrents in water trEEtrrent, it is not unreasonable to 67 

cssume a::juifers with TDS levels above 5000 ppm are US3ble 68 

now or will be US3ble in the future." Howe.ter, on September 69 

30, 2015, the U.S. District Court for Wyoming granted a 10 
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71 preliminary injunction filEd by the StatES of Wyoming and 
72 Colorado to stop implerrentation of the BLM rule l::m3cl on the 
73 cssertion that the EPAct procludES BLM rulemaking? 
74 In 2004, EPA4 documentEd the widESprm::! ure of hydraulic 
75 fra:;turing in USDVVs colocata::l in forrrntions used for coal bEd 
76 rrethane (CBM) rocovery. EPA4 ocknowla::lga::l likely ground-
77 water contamination as a rESUlt of this octivity but statEd that 
78 the attenuation foctors of dilution, adsorption, and biode-
79 gradation would rEduce contaminant concentrations to safe 
80 le.tels prior to reaching domEStic wells that are ganerally 
81 shallower than production wells. Thus, EPA4 distinguished 
82 impoct to USDVVs from impoct to domEStic wells. In 2014, 
83 while defining the chemical abstroct numbers of fluids 
84 dESignatEd as diErel fools, EPA re.ti93d its position and statEd 
as that injecting stimulation fluids diroctly into USDVVs "prESellts 
86 an imrrediate risk to public hoolth becaure it can directly 
87 dEgrade groundwater, ESpecially if the injectEd fluids do not 
as benefit from any natural attenuation from contoct with soil, as 
89 they might during movement through an a::juifer or separating 
oo stratum.''5 

91 The Pavillion Field ) is locatEd Effit of the Town of 
92 Pavillion in Fremont County, WY, in the wESt-central portion 

Figure 1. Central portion of the Patillion Field iiiL.Strating locations of 
dorn:stic water wells, production wells, plugged and atandoned 
(P&A) wells, and EPA monitoring wells (lcreled). The entire Field, 
with latels for production and dorn:stic wells and cpproxirrate 
locatiors of unlined pits, is iiiL.Strated in The geogrcphic 
arES in which the Field is located is iiiL.Strated in Sl At 
---~~~~~-~~----~-~-----

93 of the Wind River Basin (WRB) (Figure ). The field 
94 consists of 181 production wells including pluggEd and 
95 abandonEd wells. Conventional and unconventional (tight 
96 gas) hydrocarbon production in the Pavillion Field is prirrnrily 
97 natural gas from sandstone units in the Paleocene Fort Union 
98 and overlying Early Eocene Wind River Forrrntions. However, 
99 oil has also tren producEd from production wells in thEre 

100 forrrntions, prirrnrily in the WEStern portion of the field close to 
101 the suspectEd location of a fault &:ctions A.1 and A2). 
102 In rESpOnse to complaints regarding foul taste and odor in 
1o3 water from domEStic wells within the Pavillion Field, EPA 
104 initiatEd a groundwater inVEStigation in Saptember 2008 under 
1o5 the Comprehensive Environmental RESponse and Liability Act 
100 (CERCLA).6 This inVEStigation rerrnins the only one in which 
107 CERCLA has l::ren invokEd to inVEStigate potential ground-
108 water contamination due to hydraulic fra:;turing. 1 Under 
109 CERCLA impoct to both groundwater rESOurCES and domEStic 
110 wells is evaluatEd, in contrast to limiting evaluation to impoct to 

B 

domEStic wells as is common in oil- and ga:;-field-l::m3cl 111 

inVEStigations. 112 

EPA conductEd two domEStic well sampling events in March 113 

2009 (Pha:e 1)6 and J3nuary 2010 (Phase II). Betwren June 114 

and Saptember 2010, EPA installEd two monitoring wells, 115 

MV\101 and MV\102, using mud rotary drilling with s:;reena::l 116 

intervals at 233-239 m and 296-302 m below ground surfoce 117 

(bg5), rESpectively. ThEre monitoring wells were installEd to 118 

evaluate potential upward solute transport of compounds 119 

a5SOCiatEd with well stimulation to maximum depths of current 120 

groundwater use (~322m). EPA samplEd MV\101 and MV\102 121 

during the Phase Ill (October 2010) and Phase IV (April2011) 122 

sampling events. 123 

In Dea3mber 2011, EPA9 rela:md a draft report sumrrnrizing 124 

rESUlts of the Phase I-IV sampling events. EPA documentEd 125 

groundwater contamination in surficial Quaternary uncon- 126 

solidata::l alluvium attributable to nurrerous unlinEd pits used 127 

for disposal of diErel-oil-bcsed (invert) drilling mud and 128 

production fluids including flowbock, condensate, and 129 

producEd water prior to the mid-1990s. EPA9 also documentEd 130 

injection of stimulation fluids into USDVVs and concludEd that 131 

inorganic and organic gaochemical anorrnliES at MW01 and 132 

MW02 appESrEd to be attributable to production well 133 

stimulation. EPA receivEd numerous comments both challeng- 134 

ing and supporting its findings in the draft EPA report.10
-

37 We 135 

re.tiewa::l and considerEd thEre comments when preparing this 136 

rrnnus:;ript. 137 

A sul:stantial amount of data has l::ren collectEd since 138 

publication of the 2011 draft EPA report, adding to an alrm::!y 139 

EOO:ensive data set. In April 2012 (Pha:e V) the EPA38
•
39 split 140 

samplES with the U.S. Geological &lrvey at MV\101 40
·
41 and 141 

MV\102.42 In 2014, the Wyoming Oil and Gas Conservation 142 

Commission (WOGCC) rela:md a report on production well 143 

intEgritl3 and in 2015 rela:md a report on surfoce pits.44 In 144 

December 2015, the Wyoming Department of Environmental 145 

Quality (WDEQ) rela:md a report on sample rESUlts of a 146 

sul:set of domEStic wells pre.tiously sampled by EPA 45 
147 

We conducted a comprehensive analysis of all publicly 148 

available online data and reports, toe.taluate impoct to USDVVs 149 

and usable water as a rESUlt of ocid stimulation and hydraulic 1so 
fra:;turing. Although injection of stimulation fluids into USDVVs 151 

in the Pavillion Field was pre.tiously documentEd by EPA 9 the 152 

potential impoct to USDVVs at depths of stimulation was not 153 

a5SES93d. We evaluate potential upward migration of con- 154 

taminants to depths of current groundwater use using data from 1ss 
MV\101 and MV\102. We also e.taluate potential impoct to 156 

domEStic wells as a rESUlt of IEgOCy disposal of production and 157 

drilling fluids in unlinEd pits. 158 

• 159 

SourCES of EPA reports, versions of the Quality Assurance 180 

Project Plan (QAPP), and Audits of Data Quality (ADOs) are 161 

providEd in Table Sl SourCES of analytical data and 162 

a5SOCiated inforrrntion on quality assurance and control are 183 

sumrrnrized in ADOs were conducted by EPA for 164 

Pha:e I-IV inVEStigations to verify the quality of analytical data 165 

and consistency with requirements specified in the QAPP. 186 

In rESponse to a comprehensive inforrrntion requESt by EPA 167 

regarding oil and gas production and disposal octivitiES in the 168 

Pavillion Field, the field operator, Encana Oil & Gas (U.S.) Inc., 169 

providEd Material 83fety and Data Sleets ( MSDS;) of products 170 

used for well stimulation to EPA46 During the 171 

Pha:e V sampling event, EPA de.telopa::l a gas chromatography- 172 

001: 
Environ~ &:i~ Techno!. XXXX, XXX, XXX-XXX 

2016-009474-00217 



Table 1. Summary of Major lon Concentrations of Domestic Wells in the Wind River Indian REServation (WRIR), Fremont 
County, W'{, and within and around the Pavillion Field 

\1\/RIR" Fremont Countyb within and around Pavillion Fieldc 

parameter (mg/L) n median ran!Jl n median Jang:l n median ran!Jl 

TDS 154 490 211-5110 77 1030 248-5100 65 925t 229t-4901 1 

Ca 149 10 1-486 77 45 1.7-380 48 50.8 3.32-452 

Mg 128 2.2 0.1-195 77 8.2 0.095-99 45 5.32 0.024-147 

Na 153 150 5-1500 77 285 4.5-1500 72 260 38.0-1290 

K 149 2.0 0.2-30 77 2.45 0.1-30 43 1.36 0.179-10.5 

so4 154 201 2-3250 77 510 12-3300 88 590 29.0-3640 

Cl 154 14 2-486 77 20 3-420 48 21.1 2.60-77.6 

F 154 0.7 0.1-8.8 76 0.9 0.2-4.9 46 0.88 0.20-4.1 

aWith the exception of pota35ium, from Daddoo48 lnforrration on pota35ium extra::ted from Daddoo.53 bFrom Plafcan et al. There is overlap of 
19 s:mple results with DaddQ/\1.48

·
53 0 Major ion concentrations in dom:stic V~.ells6·8 ·9· 39 .45 ·52SummariZEd in MESn values t.re:l for 

dom:stic V~.ells s:mpled more than once. n N uml::er of s:mple results. t TDS for EPA data estirrated using linESr regression equation from Daddoo48 

TDS (rrg/L) = 0.785 x specifiC conductance (IJS/cm) - 130 (n = 151, r2 = 0.979) 

173 flarre ioni:zation-l:esEd approa::h to obtain a lower reporting 
174 limit (50 j..lg/L) for methanol compared to commercial 
175 laboratory analysis (5000 j..lg/L). We obtained this data set cs 
176 the rESUlt of a Freedom of I nforrrntion Act reql.ffit to EPA.47 

m We re.tievved over 1000 publicly available well completion 
178 reports, sundry notia:s, drilling reports, and cement bond and 
179 variable density logs a:x:eB3CI from the WOGCC Internet site 
1ao using API search numbers to determine dates of well 
181 completion, depths of surfcre ccsing, top of original or prirrnry 
182 rerrent, and numbers and depths of cement squeeze jots 
183 (injection of cement through perforated production ccsing to 
184 rerra::liate or ooend existing prirrnry cement). Similarly, we 
1as revievved online inforrrntion to document well stimulation 
186 practia:s sumrrnrized in 
187 The field operator analyzed rrnjor ions in produced water 
1aa s:mples at 42 production wells in 2007 ). EPA 
189 collected produced water s:mples at four production wells in 
100 2010 and analyzed them for organic compounds 
191 The field operator also conducted mechanical integrity 
192 and bradenhea:l (annular spa:E betwEen production and 
193 surfcre ccsing) testing betwEen November 2011 and December 
194 2012. In addition to sustained ccsing prESSUre at many 
195 production wells during that period water 
196 flowed through the bradenhea:l valve to the surfcre at four 
197 production wells &lction D.3). Aqueous analysis of 
198 bradenhea:l water S3111ples by the field operator wcs limited 
199 to rrnjor ions ). Production well string and 
200 brandenhea:l g:E S3111ples were collected for benzene, toluene, 
201 ethylbenzene, xylenes (BTEX) and light hydrocarbons 
202 

203 To evaluate the efi:ct of purging volume on water quality, 
204 EPA collected ten s:mples through time during 
205 the Phcse V S3111pling event at MW01. Based on EPA's purging 
206 procedure, we developed a model incorporating plug flow in 
207 ccsing and mixing in the s::reened interval &lction E.3, 
206 Figure Sl E4 ). Our simulations indicated that virtually all 
209 (99.997%) of water entering thes:mpling train at thesurfcreat 
210 the time of the first S3111ple collection at MV\101 originated 
211 directly from the surrounding forrrntion (i.e., no stagnant 
212 ccsing water). MV\102 wcs a low flow monitoring well 
213 The cause of low flow is unknown but could be due to 
214 several foctors, including low relative aqueous peri'TB3bility due 
215 to g:E flow or insufficient removal of drilling mud during well 
216 de.telopment. During the Phcse V S3111pling event, MW02 wcs 
217 repEEtedly purged over a 6-day period to ensure that s:mpled 

--·--·- ____ .. ____ ---.. --------

c 

water originated from the surrounding forrrntion &lction 218 

E.2, Figure Sl E5). A discussion of monitoring well 219 

construction, including scherrntics for MW01 ) 220 

and MW02 is provided in &lction E.1. 221 

• 222 

Groundwater Resources in the Pavillion Area. The 223 

Wind River and Fort Union Forrrntions are variably saturated 224 

fluvial depa;itional systems characterized by shale and fine-, 225 

medium-, and coarse-grained S3ndstone sequena:s. Lithology is 226 

highly variable and difficult to correlate from borehole data. No 227 

laterally continuous confining layers of shale exist below the 228 

rrnximum depth of groundwater use to retard upward rolute m 
migration. A comprehensive reviw of regional and local 230 

geology, including a lithologic crCJS.CTECCtion in the vicinity of 231 

MV\101 and MV\102 is provided in 232 

233 

Domestic wells in the Pavillion aroo dratv water from the 234 

Wind River Forrrntion • a rrnjor aquifer system in the 235 

WRB. From the surfcre to approximately 30 m bgs, 236 

groundwater exists under unconfined conditions.'JO Below this 237 

depth, groundwater is pre:ent in lenticular, dis:;ontinuous, 238 

confined S3ndstone units with water le.tels above hydrostatic 239 

prESSUre, and in SJme instana:s flowing to the surfcre,48
·"

0
•
51 

240 

indicating the pre:ence of strong localized upward gradients. 241 

The rrnjority of documented domestic well completions in 242 

Fremont County"1 and five municipal wells in the Town of 243 

Pavillion52 west of the Field are completed in the Wind River 244 

Forrrntion. 245 

Flow to the surfcre wcs ol:rerved in a domestic well during 246 

the Phcse II S3111pling e.tent, and cs m=mtioned, at four 247 

production wells during bradenhea:l testing in 2012. While the 246 

overall vertical groundwater gradient in the Pavillion Field is 249 

downward, thESe observations indicate that localized upward 2so 
hydraulic gradients exist in the field, which is relevant to 251 

potential upward rolute migration from depths of production 252 

well stimulation. The dEepest domestic wells in the Pavillion 253 

Field and immediate surrounding area are 229 and 322 m bgs, 254 

respectively ). Two municipal wells were 2ss 
proposEd, but not drilled, in the Pavillion Field cs replacement 256 

water for dorre;tic wells at depths of 305 m bgs, 52 similar to the 257 

depth of MV\102 installed by EPA 2sa 
Major ion concentrations of dorre;tic wells in the Pavillion 259 

field (sumrrnrized in are typical of the Wind River 280 

Indian REServation (WRIR), west of the Pavillion Field, and 261 t1 
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Figure 2. (a) Elevation in al:mlute rnEl3l1 s:al level (AMSL) and approximate depth relow ground surfa::.e of docurrented a::id and hydraulic 
fra::turing stimulation stcges. (b) Cumulative distribution of stimulation stcgEs as a function of depth relow cfeep:st groundv\ater t..re in the Pavillion 
Field. Docurrentation of stimulation stcgEs is at:rent at a numl::er of production wells so that numl::ers pre:roted here are a lower bound. 
--------- ---········--··-··-···--------------·---·-··--------·---

262 in Fremont County, where the Pavillion Field liES, 1) 
263 with TDS levels <5000 rTl:J/ L. TDS conrentrations in the Wind 
264 River Forrrntion appEEr to vary with I ithology rather than depth 
265 (white coarsa S3ndstone C69JCiatEd with lower TDS vaiUES).52 

266 There are no app3rent trends in TDS le.tels with depth from 
267 data sets from the WRIR, Fremont County, and domEStic 
268 wells in and around the Pavillion Field. 
269 The Fort Union Forrrntion is not used for water supply in 
270 the Pavillion ar"EE. Howe.ter, the forrrntion is highly productive 
271 and per!THlble where fra:;tured49 with TDS valUES from 1000 to 
272 5000 lllJ/L. An aquifer 6<emption WC£ obtainEd to enable 
273 dispoS31 of producEd water in a dispa:al vvell perforated in the 
274 Fort Union Forrrntion55 at a location 5.6 km northWESt of the 
275 Pavillion Field. Use of this vvell We£ suspendEd due to failure of 
276 well casing. Thus, the Wind River and Fort Union Forrrntions 
m in the Pavillion Field rrret the rEgulatory definition of USDW;, 
278 as 6<pl icitly statEd by EPA, and of usable water as definEd by 
279 the BLM. 
280 Well Stimulation Depths, Treatments, and Chemical 
281 Additives. Exploration of oil and gas in the Pavillion Field 
282 commenced in August 1953 with increasingly shallow 
263 stimulations through time The first acid stimulation 
264 and hydraulic fra:;turing stq:JES (injection over one or more 
265 dis::rete intervals) occurred in .line 1960 and Octooor 1964, 
266 rESpectively. Acid stimulation ca:m::l in 2001. To date, the last 
287 stimulation stq:)e (hydraulic fracturing) occurrEd in April 2007. 
268 Most production vvells vvere completEd and stimulatEd during 
289 several periods of incra:m::l octivity, ESpecially after 1997 

D 

2a). Acid stimulation and hydraulic fra:;turing occurred 200 

as shallowly as 213 and 322 m bg;, rESpectively, at depths 291 

comp3rable to dEepESt domEStic groundwater use in the arEE 292 

2a). Approximately 10% of stimulation stq:JES were 293 

<250 m of deepESt domEStic groundwater use wherEffi 294 

approximately 50'/o of stimulation stq:JES were <600 m and 295 

80% vvere <1 km of deepESt domEStic groundwater use 296 

2b). 297 

Surfcm casing of production wells • the prirrnry line of 296 

defense to protect groundwater during conventional and 299 

unconventional oil and gas ooraction • is relatively shallow in 300 

the Pavillion field with a mEdian depth of 185 m bg; (i.e., 301 

shallovver than the dEepESt groundwater use) and range of 302 

100-706 m bg; ). There is no prirrnry cement 303 

oolow surfcm casing, often for hundreds of meters, for 55 of 304 

106 (---52%) production vvells for which cerrent bond logs are 305 

available , ). There is currently no 306 

requirerrent in Wyoming for placement of prirrnry cement to 307 

surfcm casing or to ground surfcm.45 
306 

Instantaneous shut in prESSUrES (ISIP) (wellhEa:l gauge 309 

prESSUre immEdiately following fra:;ture trEEtment) vvere similar 310 

for acid stimulation and hydraulic fra:;turing 311 

suggESting that both rrntrix acidizing and acid fra:;turing (no 312 

propp3nts used56
) occurrEd in the Pavillion Field. Acidizing 313 

solutions used in the Pavillion Field typically consistEd of a 314 

71/2% or 15% hydrochloric ocid solution plus a:::lditiVES 315 

dEs::ribEd in vvell completion reports as inhibitors, surfa:;tants, 316 

diverters, iron 33qUEStration q:j81lts, mutual solvents, and clay 317 
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Figure 3. Box and whisker plots of minimum and rraximum, quartiles, rredian (line in l::oXES), rnem (crooxs in boxes) of (a) Na, (b) K, (c) Cl, (d) 
S04 for dorrestic wells inventoried by Daddow48

·
53 and Plafcan51 in the Wind River Indian Reservation and Fremont County, respectively, s:rnpled 

by EPAfl·8·
9

·
39 and WDEQ45 (PGDWXX ~ies) greater ttm and le:s ttm 1 km from a production well, Water Development 

Commission52 (WNDC ~ies) greater ttm 1 km from a production well, EPA monitoring wells9
·
39 (Table; and produced water 

and bradenhead water s:rnples (Table Sl 01 ) . Domestic wells s:rnpled more ttm once, including data from Daddow, are represented with a rnem 
value. Fourteen rre3Sl.lrernents in DaddoW3 < 1 mg/L for pota:Eium are not illustrated. Data points at MW01 and MWCJ2 are s:rnples collected 
during Pha:E Ill, IV, and V s:rnple events. 

-------·-·-·-----·----- ··-···--·-------... -----------

318 stabilizers. Acidizing solutions were often flushed with a 2, 4, or 
319 6% potffisium chloride (KCI) solution. Pad ocid, to initiate 
320 frocturES, contained 10-50'/o heavy aromatic petroleum naptha. 
321 Corrosion inhibitors contained isopropanol and propargyl 
322 alcohol. Clay stabilizers contained methanol. Musol solvents 
323 U93d for ocid stimulation consisted of 60-100% 2-butoxyetha-
324 nol and 10-30% oxylated alcohol 
325 Prior to 1999, "S3It solutions" were commonly USEd for 
326 hydraulic frocturing. After 1999, a 6% KCI solution wcs USEd 
327 extensively for hydraulic frocturing often combined with C02 

328 foam, with sui:Hquent flushing using a 6% KCI solution. There 
329 were reported lOSSES of KCI solutions during stimulation (e.g., 
330 at Tribal Pavillion 12-13 "lost thoUS3nds of bbls KCI"). 
331 Undiluted diESel fuel wcs U93d for hydraulic frocturing at thrre 
332 production wells before 1985. From the mid-1970s through 
333 2007, there wcs widEsprESC! use of g3lled frocture fluids (g3lled 
334 water, lillEEr g3l, and cross-linked g3l). DiESel fuel #2. wcs used 
335 for liquid g3l concentratES Ammonium chloride, 
336 potcssium hydroxide, potffisium metaborate, and a zirconium 
337 complex were U93d as cross-linkers. 

E 

Gelled frocture fluids were U93d extensively with C02 foam 338 

BetwEen 2001 and 2005, "VVF-125" wcs used 339 

with C02 foam (often with a 6% KCI solution) for hydraulic 340 

frocturing A stimulation report (one of only 341 

thrre publicly available throughout the operating history of the 342 

Field) and MSDS5 indicate that VVF-125 contained diESel fuel 343 

#2, 2-butoxyethanol, isopropanol, ethoxylated linoor alcohols, 344 

ethanol, and methanol. During 2001, VVF-125 and unidentified 345 

product mixturES were USEd with a 6% KCI and a 10% methanol 346 

solution and C02 foam for hydraulic frocturing followed with a 347 

6% KCI and 10% methanol solution flush. Other VVF-ffiriES 346 

compound mixturES of unknown composition were also used 349 

with C02 foam and in some caxs with N2 gas. Methanol, 350 

isopropanol, glycols, and 2-butoxyethanol were USEd in foaming 351 

ag3nts Ethoxylated lillEEr alcohols, isopropanol, 352 

methanol, 2-butoxyethanol, heavy arormtic petroleum naptha, 353 

naphthalene, and 1 ,2,4-trimethylbenzene were used in 354 

surfoctants Slickwater (commonly with a 6% 355 

KCI solution) wcs U93d for hydraulic frocturing with and 356 

without C02 foam in 2004 and 2005, rESpectively 357 

358 
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359 At lEaSt 41.5 million liters (or ~11 million gallons) of fluid 
360 wcs USEd for vvell stimulation in the Pavillion Field (calculated 
361 from Given lock of information at numerous 
362 production vvells, this is an underEStirrnte of octual cumulative 
363 stimulation volume. The cumulative volume of vvell stimulation 
364 in closely sp:rnd vertical vvells in the Pavillion Field is 
365 charocteristic of high volume hydraulic frocturing in shale 
366 units. In e.taluating solute attenuation in USDW;, EPA4 did 
367 not consider cumulative volumes of injection of well 
366 stimulation fluids in closely sp:rnd vertical production vvells 
369 common to CBM and tight gas production. 
370 Evaluation of Impact to USDWs and Usable Water. In 
371 the Pavillion Field, impoct to USDW; and US3ble waters 
372 depends upon the advective-dispersive solute transport of 
373 compounds (or their degradation products) USEd for well 
374 stimulation to water-l:mring units (s:mdstone units at or near 
375 water S3turation). water-l:mring units exist throughout the 
376 Wind River and Fort Union Forrrntions in the Pavillion Field. 
377 For instance, production vvell Unit 41X-10 wcs recommended 
378 for plugging and abandonment in 1980 ta;ause of "problem; 
379 with water production and casing failure." In 1980, drilling logs 
360 at Tribal Pavillion 14-2 stated "Hit water flow while drilling at 
361 4105-4109 ft" bgs. The magnitude of produced water 
382 production in the Pavillion Field is variable with some vvells 
363 having high produced water production (e.g., 17.9 million liters 
364 ~4.7 million gallons at Tribal Pavillion 23-10 from .ltly 2000 
365 to pre:ent) In some casES, stimulation fluids 
366 were injected directly into water l:mring units. For instance, at 
387 Tribal Pavillion 14-1, a cast iron bridge plug wcs USEd to stop 
366 water production in 1993 from an interval where hydraulic 
389 frocturing occurred using undiluted die:el fuel in 1964 
390 

391 The migration of stimulation fluid to water-l:mring sand-
392 stone units in the Pavillion Field also likely occurred during 
393 frocture propagation and sutsEquent lookoff (loss of fluid into a 
394 forrrntion in or near the target stratum). Lookoff incra:H:S in 
395 complex fracture networks as a rESUlt of I ithologic variation over 
396 short distana:s and contoct of stimulation fluid with pefTll33ble 
397 strata'*1-

61 expected during hydraulic frocturing in fluvial 
396 depa;itional environments of the Wind River and Fort Union 
399 Formations. Lookoff can remove much or most of the frocturing 
400 fluid e.ten for moderate siZEd induced froctures."8

·
59 Maximum 

401 ISIP valUES for ocid stimulation and hydraulic frocturing vvere 
402 19.5 and 40.1 MPa rESpectively, equivalent to 
403 ~2000 and ~4100 m of hydraulic hEEd. PrESSUre buildup 
404 during hydraulic frocturing far in exCESS of drawdown expected 
405 during produced water extroction rrnkes full recovery of 
406 stimulation fluids unlikely.4•

62 

407 The migration of stimulation fluids to water-l:mring units 
406 also likely occurred as a rESUlt of loss of zonal isolation during 
409 well stimulation SEction 0.1). Casing failure occurred at 
410 five production vvells following well stimulation. Cement 
411 sqUEeZES vvere performed above prirrnry cement often days 
412 after hydraulic fracturing without explanation63 at six 
413 production wells, potentially because of migration of 
414 stimulation fluid above prirrnry cement. At one production 
415 well, stimulation fluid wcs injected just 4 m oolow an interval 
416 locking cement outside of the production casing with a 
417 stimulation prESSUre of only 1.3 MPa indicating potential 
418 entry into the annular spcre. 
419 Major ion concentrations in produced water S3mpled after 
420 stimulation ) were distinct from vall..ffiexpected in 
421 the Wind River Forrrntion as evidenced by S3mple data from 

F 

the VVRIR,48
·"

3 Fremont County, and dorn:stic vvells in and 422 

around the Pavillion Field which were repre:entative of the 423 

Wind River Formation regardlESS of distance from production 424 

vvells Using combined data sets in and 42513 

around the Pavillion Field, and the nonparametric Mann- 426 

Whitney tESt (null hypothESis that two S3mple sets come from 427 

the S3me population), sodium, pota:;sium, and chloride 428 

concentrations were higher and sulfate concentrations lovver 429 

in produced water compared to concentrations expected in the 430 

Wind River Formation (p = 6.6 x 10-19, 2.1 x 10-15, 2.6 x 431 

10-16, and 4.4 x 10-19, re;pectively), providing direct evidence 432 

of impoct to USDW; at depths of stimulation. Also, pota:;sium 433 

incra:md with calcium concentrations and sulfate incra:sed 434 

with TDS concentrations, rESpectively, in domEStic vvells but 435 

not in production vvells (Figures Sl 01 ). Chloride is a rrnjor 436 

component of TDS concentrations in production wells. 437 

Pota:;sium/calcium and chloride/sulfate concentration ratios 436 

vvere higher in production vvells than in dorn:stic vvells 439 

further indicating anorrnlous pota:;sium, chloride, and 440 

sulfate concentrations in production wells. 441 

Produced water S3mpiES were collected from gas-water 442 

separators at four production vvells and analyzed for organic 443 

compounds 03) during the Phase II 444 

S3mpling e.tent. 83mples from one production vvell apPffired 445 

to oo from both an a::JUOOUS and an apparent nona::Jueous phase 446 

liquid with the latter exhibiting thousands of mg/L of oonzene, 447 

toluene, ethyll:enzene, xylenes (BTEX). Synthetic organic 446 

compounds methylene chloride and triethylene glycol (TEG) 449 

vvere detected in produced water S3mples at 0.51 and 17.8 mg/ 450 

L, rESpectively indicating anthropogenic origin. Methylene 451 

chloride has teen detected in flowbock water in other 452 

systerrs,54 including 122 dorn:stic vvells above the Barnett 453 

Shale TX,65 and in air S3mpled near vvell sites.66 
454 

Sample Results at MW01 and MW02. Concentrations of 455 

pota:;sium in MW01 and MW02 vvere higher than expected 456 

vall..ffi in the Wind River Forrrntion at p-vaiUES of 457 

2.6 x 1 o-13 and 1.2 x 1 o-06, rESpectively. High pH valUES (>11 456 

standard units) were observed during purging at both 459 

monitoring wells 460 

indicating that elevated pota:;sium concentrations 461 

rrny have teen attributable to rela:m of pota:;sium from 462 

pota:;sium oxidES and sulfatES during curing of cement67
-

71 
463 

USEd for monitoring vvell construction. However, a numl:er of 464 

observations were inconsistent with cement interoction as a 465 

causative factor for ele.tated pH, and there wcs extensive use of 466 

compounds containing pota:;sium including pota:;sium hydrox- 467 

ide during stimulation water in contoct with 466 

hydrating cement is saturated or ovei'S3turated to portlandite 469 

(Ga(OH2))
12

-
74 and rerrnins ovei'S3turated prior to degrada- 470 

tion or carbonation. In contrast, water from monitoring 471 

vvells wcs highly undersaturated to portlandite. Elevated pH in 472 

monitoring wells wcs not observed during monitoring well 473 

development until natural gas intrusion occurred in the vvells, 474 

Sl.lgdESting dega:;sing as a possible cause of elevated pH 475 

SEction E.5). Also, pota:;sium wcs detected at a concentration 476 

of 6000 mg/L in a bradenhEEd water S3mple having a pH of 477 

10.86 standard units from Tribal Pavillion 13-1 (TableSI 01 ). 478 

This may indicate either high pota:;sium concentration at 479 

depths oolow EPA monitoring vvells due to well stimulation 460 

(water from bradenhEEd S3mpiES originated at some unknown 461 

distance above cement outside production casing at 63Ch 482 

production vvell) or interoction of bradenhEEd water with 463 

vvellbore cement. 464 
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Figure 4. &lmrary of organic compounds detocted by EPA in MW01 and MW02 during Ph::I::E Ill, IV, and V s:mpling even1s. Glycols, alcohols, and 
low rnolocular weight organic acids were not analyzed in Ph::I::E Ill. Alkylphenols and rrethanol ( GC-FI D rrethod) were only analyzed in Ph::I::E V. 
Organic compounds detoctiors for MW01 and MW02 are surrrrariZEd in Table respoctively. 

485 The rn:dian chlorideoonrentration at MW02 wcs4691'Tl:J/L 
486 well above expocted valUES in the Wind River 
487 Formation (p = 7.0 x 10-07

). Compounds oontaining chloridEs 
488 (e.g., KCI solutions) were used extensively for stimulation in 
489 the Pavillion Field. Sulfate oonrentrations in MVV02 were oolow 
490 expected valUES in the Wind River Formation (p = 2.7 x 10-07 ) 

491 and not dissimilar (p = 0.40) to produred water oonrentrations. 
492 The Cl/804 oonrentration ratio wcssimilar to produred water 
493 at MVV02. Chloride and sulfate oonrentrations 
494 in MW01 were more typical of the Wind River Formation 
495 which may oo due variation in well stimulation proctia:s both 
496 spatially and over time. 
497 Conrentrations of organic oompounds detected in MW01 
498 and MVV02 are summarized in E4a and 
499 DiESel range organics (ORO) and ga:oline range organics 
soo (GRO) were detected in MW01 and MVV02 with maximum 
501 DRO oonrentrations of 924 and 4200 iJg/L, rESpectively and 
502 GRO oonrentrations of 760 and 5290 iJg/L, rESpectively. 
503 Bemene, toluene, ethylbenzene, m,p-xylenES, and o-xylene were 
504 detected in MVV02 at maximum oonrentrations of 247, 677, 
505 1 01 , 973, and 253 iJg/ L, rESpectively, but were not detected at 
506 MW01. The maximum oontaminant le.tel ( MCL) of oonzene is 
507 5 j..lg/L, so the ol:mrved maximum value wcs 50 tim:s higher 
506 than the MCL. Nondetection of BTEX at MVV01 is surprising 
509 given that the well wcs gcs-charged (foaming during sampling, 
510 Figure with similar light hydrocarbon oompa;ition to 
511 MW02 Nondetection of BTEX may oo due to 
512 increased dispersion and biodegradation of thESe oompounds at 
513 the shallower depth of this well. We oould find no published 
514 information on BTEX oompounds in groundwater at 
515 oonrentrations detected in MVV02 occurring above a gas field 
516 in the al:mnce of well stimulation. However, further tESting, 
517 such as compound specific isotope analysis of BTEX 
518 oomponents pre;ent in natural gas from the Pavillion Field 

G 

(Table 02) and water from MW02, is 11Ere)S3ry to attribute 519 

detection of BTEX to well stimulation. 520 

1 ,3,5-, 1 ,2,4-, and 1 ,2,3-Trimethylbenzene were detected at 521 

maximum oonrentrations of 71.4, 148, and 45.8 iJg/ L, 522 

rESpectively in MVV02 and at an order of rll:{!nitude lower 523 

oonrentrations in MVV01. Naphthalene, methylnaphthalenES, 524 

and alkyloonzenES were also detected in MVV02 at oonren- 525 

trations up to 7.9, 10.2, and 21.2 j..lg/L, rESpectively. Similar to 526 

BTEX oompounds, detection of trimethyiOOnze!lES, alkylben- 527 

zenES, and naphthalenES oould in principle reflect non- 528 

anthropoganic origin but natural gas from the Pavillion Field 529 

and in EPA monitoring wells is "dry" (ratio of methane to 530 

methane through pentane oonrentration >0.95) 531 

Also, oil production in the vicinity of 532 

monitoring wells is very low or zero ESpecially in the vicinity of 533 

MVV02 Thus, the detection of 534 

higher molecular weight hydrocarbons in groundwater is 535 

unexpected. TrimethyiOOnze!lESand naphthalenES were pre;ent 536 

in mixture; used for well stimulation 537 

Other organic compounds used extensively for well 538 

stimulation were detected in MVV01 and MVV02 539 

Methanol, ethanol, and isopropanol were detected in 540 

monitoring wells at up to 863, 28.4, and 862 j..lg/L, rESpectively 541 

Tert-butyl aloohol (TBA) wcs detected at 6120 j..lg/ 542 

L in MW02. Detection of TBA in groundwater ha5 boon 543 

ffiSOCiated with dEgradation of lert-butyl hydroperoxide used for 544 

hydraulic frocturing.79 Another potential source of TBA is 545 

degradation of methyllert-butyl ether (MTBE) E69JCiated with 546 

diESel fuel. 547 

Diethylene glyool (DEG) and TEG were detected in both 548 

monitoring wells at maximum oonrentrations of 226 and 12.7 549 

iJg/L, rESpeCtively, in MW01, and at 1570 and 310 iJg/L 550 

rESpectively, in MVV02 Tetrrethylene glyool wcs 551 

detected only in MVV02 at 27.2 iJg/L. MSDS5 indicate that 552 
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Figure 5. (a) Box and whisker plots of minimum and rraximum, quartiles, median (line in boxes), rra:m (cro:res in boxes) of diesel organics 
(ORO) in shallow monitoring Vl.ells nEEr unlined pits potentially receiving production fluids (abbreviatiors of production wells in C1) and 
dorrestic wells6

·
8

·
9

·
39.45 (L0-20 and PGOWXX ~ies) le:s than and grffiter than 000 m from pits. Moon values are L.S:d for dorrestic well s:rnpled 

more than once. (b) ORO a; a function of elevation and approximate depth below surfa::e for dorrestic wells with results of multiple s:rnple events 
illustrated. 

553 DEG wcs used for well stimulation. Use of TEG wcs not 
554 specified. Polar organic compounds, includii] DEG, are 
555 commonly used as rerrent grinding C{l8flts.85

-
8 DEG and 

556 TEG have teen detECted in lm:;hate from cured rerrent 
557 s:rnpiES under static (no flow) conditions.89 Similar to ele.rated 
558 potcssium detECtion, it is possible that detECtion of glycols 
559 could be attributable to rerrent used for monitoring well 
560 construction. Howe.ter, mess flux scenario modeling, com-
561 monly used to e.raluate potential concentrations of exposure of 
562 compounds rela:m::l from materials in conta:;t with drinking 
563 water under dynamic (flowing) conditions,98 wcs conducted on 
564 MW01 indicating unlikely impa:;t. The 
565 rele.rance of dynamic tESting is corroborated by the otrervation 
566 that detECtion of DEG and TEG wcs limited to a water sample 
567 from a gas production well91 with nondetECtion in water 
568 s:rnpiES from 83 doi'Tffitic wells at five retrospECtive study 
569 sitES19

•
91

-
91 using high perforrrnnce liquid chromatography 

570 with dual mess spectrorTBtry at a reporting limit 5 j.Jg/L in 
571 EPA's national study on hydraulic fra:;turing. 2-Butoxyethanol, 
572 a glycol ether used extensively for well stimulation in the 
573 Pavillion Field wcs detECted in both monitoring 
574 wells at a maximum concentration of 12.7 j.Jg/L. 2-
575 Butoxyethanol wcs not detECted in la:£hate from cured 
576 cerTBnt.89

. 

577 The low molECular weight organica:;ids (LMWO~) la:;tate, 
578 forrrnte, a:Etate, and propionate were detected in both 
579 monitoring wells at maximum concentrations of 253, 584, 
560 8050, and 844 1-Jg/L, rESpeCtively LMWO~ are 
561 anrerobic degradation products cssociated with hydrocarbon 
562 contamination in groundwater. Acetate has teen detECted 
563 in prodUCEd water, in impoundments used to hold 
564 flowbe£k water from the Marcellus Shale, and in prodUCEd 
565 water from the Denver.J.JIESburg Bffiin, CO. Acetate and 

H 

-~·-·-·-~·----~ 

forrrnte were detECted in flowbe£k water from two ditaent 586 

fra:;turing sitES in Gerrrnny with inVEStigators concluding that 587 

thEse compounds were likely of anthropogenic origin rESUitif!Q 588 

from degradation of polyrTBrs used in the fra:;turing fluid.102 
589 

Formate and acetate are also degradation products of 590 

rTBthylene chloride. Benzoic a:;id, a degradation product of 591 

aromatics, wcs also detECted in both monitoring wells at a 592 

maximum concentration of 513 j.Jg/L. 593 

Phenols were detECtEd in both monitoring wells with 594 

maximum concentrations of phenol, 2-rTBthylphenol, 3&4- 595 

rTBthylphenol, and 2,4-dirTBthylphenol at MV\102 at 32.7, 22.2, 596 

39.8, and 46.3 j.Jg/ L, rESpeCtively. KetonES were also detECted in 597 

both monitoring wells with maximum concentrations of 596 

acetone, 2-butanone (MEK), and 4-rTBthyl-2-pentanone 599 

(MIBK) at MV\102 at 1460, 208, and 12.5 1-Jg/L, rESpECtively. 600 

Acetone, MEK, phenol, 2-rTBthylphenol, 3&4 methylphenol, 601 

and 2,4-dirTBthylphenol were detECted in prodUCEd water from 002 

the Denver.J.JIESburg Bffiin. MIBK, MEK, and acetone may 603 

rESUlt from microbial degradation of biopolyrTBrs used for 604 

hydraulic fra:;turing. Nonylphenol and octylphenol, com- 605 

monly pre:ent in mixturES of ethoxlyated alcohols, were 606 

detECtEd in both monitoring wells with maximum concen- 607 

trations at MW02 at 28 and 2.9 !JQ/ L, rESpeCtively. Ethoxlyated 608 

alcohols were used for well stimulation in the Pavillion Field. 609 

Detection of organic compounds, ESpECially them that 610 

cannot be attributEd to cerTBnt, and degradation products of 611 

compounds known to have teen used for production well 612 

stimulation in both MV\101 and MV\102 provide additional 613 

e.tidence of impa:;t to USDV\Is and indicate upward solute 614 

migration to depths of current groundwater use. Installation of 615 

additional monitoring wells at depths similar to MV\102, with 616 

sample analysis supplerrentEd by state-of-the-art analytical 617 

rTBthods better suited to detection of compounds pre;ent in 618 
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619 stimulation fluids (e.g., liquid chromatographJ ooupled with 
620 quadrupole tirm-of-flight rra:;s spectrO!'Tl':ltry 10 -ioo), is necES-

621 sary to eJaluate long-term risk to dorn:stic well users in the 
622 Pavillion Field. 
623 Assessment of Potential Impact of Unlined Pits to 
624 Domestic Wells. EPA7 previously reported disposal of die:el 
625 fuel-l:e:ecl (in\iert) drilling mud and production fluids (flow-
626 l::>a:;k, oondensate, produced water) in unlined pits in the 
627 Pavillion Field and rESUltant groundwater oontamination in 
628 surficial Quaternary deposits in shallow monitoring wells 
629 sampled by EPA in the vicinity of thrre unlined pits but did 
630 not docu!'T"Bnt the extent of thESe disposal practia:s. At IEffit 64 
631 unlined pits were used for disposal of drilling fluids of which 
632 invert mud wcs dispa;ed in 57 pits oonsisting of up to 7~/o 
633 die:el fuel Sl F1, Sl fls many a; 44 of 64 unlined 
634 pits were used or likely used for disposal of production fluids. 
635 Unlined pits were emptied and cla;ed in 1995. 
636 A summary of information available on disposal of drilling 
637 and production fluids in pits is provided in This 
636 summary includEs rESUlts of soil and groundwater sampling, 
639 excavation volum:sand a;sociated criteria (1000-8500 mg/kg 
640 total petroleum hydrocarbons), proximity and direction of 
641 unlined pits to dom:stic wells, and recomi'T"Bndations by 
642 WOGCC44 for further inVEStigation (or no inVEStigation). 
643 The field operator hE6 ooiiECted groundwater samplES in 
644 surficial Quaternary deposits at 12 unlined pit locations.44 The 
645 highESt reported ooncentrations of GRO and ORO were 91 000 
646 and 78000 1-Jg/L, rESpECtively (Figure F2). Benzene, 
647 toluene, ethylbenzene, and xylenES were detECted at five 
646 locations at ooncentrations up to 1960, 250, 240, and 1200 
649 1-Jg/1, rESpECtively Thus, sample rESUlts indicate 
650 impa:;t to surficial groundwater in Quaternary deposits. 
651 There may be a; many a; 48 dorn:stic wells within 600 m of 
652 unlined oits of which 22 dom:stic wells were sampled by 
653 EPA0

•
8

•
9

•
39 and 11 were rESampled by WDEQ45 

654 ORO ooncentrations in dorn:stic wells <600 m from unlined 
655 pits likely receiving production fluids were elevated (p = 0.003) 
656 oompared to dom:stic wells >600 m from unlined pits 
657 5a). DRO wcsdetECted at 752 mg/kg in a re.terseosmosis filter 
656 sample from a dom:stic well (PGDW20) during the Phcse II 
659 sampling e.tent8 Concentrations of ORO in 
660 dorn:stic wells generally dECra:md with depth 5b). 
661 Another potential source of ORO in SOI'T"B dom:stic wells 
662 ) is in\iert mud remaining in boreholES. Howe\ier, 
663 ditaentiation from other source terms (unlined pits and 
664 stimulation) is not possible with currently available data 
665 &:ction G.1 ) . 
666 At two dorn:stic wells (PGDVVOS and PGDVV30), chromato-
667 gram; for ORO analysis suggESt a die:el fuel source 
666 Chromatogram; of aqueous 
669 carbon trap samplES for DRO at another 
670 dorn:stic well (PGDW20) indicated the pre:ence of hEavy 
671 hydrocarbons in water. All three dorn:stic wells are located near 
672 unlined pits likely used for disposal of production fluids. 
673 AdamantanES were detECted at low aqueous ooncentrations 
674 (<5 1-Jg/L) at four dorn:stic wells (PGDVVOS, PGDW20, 
675 PGDVV30, and PGDVV32) F3). Admantane, 2-I'T"Bthyl 
676 adanlantane, and 1 ,3-dii'T"Bthyladanlantane were detECted in a 
677 re\i€1'"93 osmosis filter sample at PGDW20 at ooncentrations of 
678 420, 9400, and 2960 1-Jg/kg, rESpECtively. AdamantanES were 
679 detECted in produced water up to 74 mg/L 
660 indicating disposal in unlined pits a; a potential source term. 
681 The inherent molECular stability of admantanES and other 

diamondoid oompounds imparts thermal stability rESUlting in 682 

enrichment in manufoctured petroleum distillatES. 109 Diamond- 663 

oids are rESistant to biodegradation110
·
111 rESUlting in their use 664 

as a fingerprinting tool to characterize petroleum and 665 

oondensate induced groundwater oontamination.112 
686 

2-Butoxyethanol wcs detECted at 3300 1-Jg/L in a dom:stic 687 

well (PGDVV33)45 The depth of this dom:stic 686 

well is only 9.1 m bgsand is located within 134m of an unlined 689 

pit used for disposal of production fluids. Other oompounds, 690 

including BTEX, E69JCiated with production well stimulation 691 

(e.g., isopropanol) were detECted at lower ooncentrations (<10 692 

1-Jg/L) in other dorn:stic wells Srnple rESUlts at 693 

dom:stic wells suggESt impa:;t from unlined pits and the 694 

imi'T"Bdiate need for further inVEStigation including installation 695 

of monitoring wells in the Wind Ri\ier Formation. Since flood 696 

irrigation is oommon in the vicinity of unlined pit areas, the 697 

lateral extent of groundwater oontamination is potentially 698 

grEEter in the Wind River Formation than in o\ierlying surficial 699 

Quaternary deposits due to "plu!'T"B diving" (i.e., unoontami~ 700 

nated water overliES portions of a oontaminant plu!'T"B).113
-

115 
701 

Our inVEStigation highlights se.teral important iffil.ES related 702 

to impa:;t to groundwater from unoon\ientional oil and ga; 703 

extraction. We have, for the first tii'T"B, demonstrated impa:;t to 704 

USDWs a; a rESUlt of hydraulic fracturing. Given the high 705 

frequency of injECtion of stimulation fluids into USDWs to 706 

support CBM extraction and unknown frequency in tight ga; 707 

formations, it is unlikely that impa:;t to USDVVs is limited to the 708 

Pavillion Field requiring inVEStigation elsewhere. 709 

&:cond, well stimulation in the Pavillion Field occurred many 710 

tim:s lESS than 500 m from ground surfoce and, in SOI'T"B CCSES, 711 

at or \iery cla;e to depths of deepESt dom:stic groundwater use 712 

in the arEE. Shallow hydraulic fracturing posES grEEter ris~ than 713 

dEeper fracturin~ does,57
•
116 ESpeCially in the pre:ence of well 714 

integrity i5SueS11 
, a; documented here in the Pavillion Field. 715 

Additional inVEStigations ei33Where are nEeded. 716 

Finally, while disposal of production fluids in unlined pits is a 717 

lega:;y issue in Wyoming, this practice hE6 OOJertheiESS caused 718 

enduring groundwater oontamination in the Pavillion Field. 719 

lmpa:;t to groundwater from unlined pits is unlikely to have 720 

occurred only in the Pavillion Field, nECESSitating inVEStigation 721 

elsewhere. 722 
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